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1. Overview 

The agricultural sensor monitoring network is a wide-range, low-cost monitoring system for 

conditions that affect crop growth. This design is being created to aid the ongoing worldwide 

food crisis, specifically in regions the most impacted by this crisis. 

For crops to grow effectively, they need moisture, nutrients and proper temperature. This design 

will detect these conditions so people to more efficiently grow crops and help alleviate the 

current worldwide food insecurity. 

 

2. Statement of the problem 

Due to the ongoing war in Ukraine, a major agricultural producer, as well as climate change and 

rapidly rising inflation, there is currently a massive worldwide food crisis. 

“In just two years, the number of people facing, or at risk of, acute food insecurity increased 

from 135 million in 53 countries pre-pandemic, to 345 million in 82 countries today.” [1] 

This project aims to assist with alleviating this problem by increasing farming yields by enabling 

farmers to better use the resources limited by recent disasters. The intention of this design is to 

assist farmers in developing countries that may not be able to utilize more expensive farm 

monitoring equipment. 

For example, crop monitoring in North America is done with satellite imaging and large-scale, 

expensive monitoring systems, which might not be practical for poorer locations, such as those 

impacted the most by war and drought. This design aims to create a cheaper, portable, and more 

convenient alternative for these regions. 

The cheaper, more portable design could also be used by amateur gardeners who are interested 

but do not want to pay for a more expensive and involved system. The system can be used to 

measure the conditions in a backyard vegetable patch from the user's home, plus some of these 

measurements can be very difficult to take by hand, especially for amateurs. This could help the 

average Canadian struggling with the current cost of living crisis by increasing the yield of a 

backyard vegetable garden. 

 

 

 

 



3. System Overview 

The overall design for this system consists of two separate parts, a central hub and a sensor node. 

Several sensor nodes are to be connected to a single central hub to create a wide range of 

coverage, such as spreading the nodes out throughout a large field so that they can relay 

information to a single location, like a barn or farmhouse. The nodes are intended to be used 

outdoors in fields and gardens, as well as in any remote and isolated place where it can be 

difficult to regularly travel to manually check conditions. Therefore, this system needed to be 

rugged and low maintenance to endure prolonged periods of outdoor exposure and isolation, 

while still being low-cost to ensure it could be used by those struggling with food insecurity.  

 

Figure 1: Block Diagram 

 

In order to limit the amount of maintenance, most notably having to change the batteries, the 

nodes were designed to be as self-contained and low power as possible. This was accomplished 

by two separate blocks working together, a solar panel to charge an integrated battery and a 

power cycling circuit designed to cut off current to the microprocessor when it is sitting idle. 

A solar panel was decided on as the main power source for the nodes due to their intended long-

term outdoor exposure, which provides ample time for solar charging. 

The power delivered from the solar panel is controlled by a charging circuit that is responsible 

for regulating the incoming voltage and current from the solar panel to safely charge the battery 



and power the rest of the node when the solar panel is active. The battery will then power the 

node once the solar panel is inactive due to limited sunlight exposure. 

 Because the sensor node only needs to be active, taking readings and transmitting them for a few 

seconds at a time and sitting idle the rest of the time, it was decided to shut off the power flowing 

from the battery to the microprocessor by using a power cycling circuit to minimize the power 

usage. This results in the design requiring a lower-capacity battery and smaller solar panel, 

which in turn reduces the overall cost of the nodes. 

The microprocessor, when it is turned on by the power cycling circuit, in turn, powers on the 

attached sensor and LORA transceiver through the 3.3V output pin. The microprocessor then 

takes readings from the attached sensors over an I2C connection and transmits the collected data 

using the LORA transceiver. 

The base node was designed to be located closer to the barn or farmhouse. It includes a 

Raspberry Pi 4, an OLED display, and a LoRa transceiver. The measured data from the sensor is 

received by the central hub, stored, and then displayed on both the OLED display and the 

Android application. The LoRa gateway utilized is a stripped-down version of a full gateway 

implemented using an RFM95W transceiver. The OLED display used is a small monochrome 

128-by-32 display. 

 

 

Figure 2: Complete Circuit Diagram 

 

  



4. Project impacts 

This project aims to introduce a cheap farming alternative in the hopes that it encourages self-

sustainability as individuals rely less on local markets. It is stated that 75% of Canadians 

purchase food from one of 5 major chains [2]. Local farming will provide alternative food 

sources and introduce competition for major chains and markets worldwide, which will 

encourage prices to decrease. Due to the design being low profile and the nodes being self-

sufficient by relying on solar power, the project's design is anticipated to have a minimal 

negative environmental impact, however, farming and the use of chemical fertilizers are 

responsible for a substantial amount of global greenhouse gasses and pollutants produced [3]. If 

farming becomes more accessible, it may create more pollution as farmers will utilize farming 

aids such as pesticides that can spread pollution to the surrounding environment.  

 

5. Design details for each block 

A. Solar panel 

Power for the system will be drawn by solar cells, also known as photovoltaic cells (PV). 

Gathering energy from the sun through PV cells is a portable, renewable solution to powering 

electrical systems, and coupled with a battery, will keep the system active regardless of sunlight 

exposure. 

The sun emits electromagnetic radiation (EMR) due to its high temperatures that can reach 27 

million degrees Fahrenheit [5]. This heat creates a nuclear fusion that splits atoms into their 

components, which causes protons to collide and generate a large amount of energy that arrives 

on Earth in the form of photons [6]. Photons come in different wavelengths, most of which is 

absorbed or reflected by the Earth’s atmosphere before reaching the ground, however, if the 

wavelength is under the visible spectrum, it will be scattered by the atmosphere before reaching 

the Earth’s surface [5]. 

𝐸𝜆 =
ℎ𝑐

𝜆
  

Equation 1: Photon Energy 

Equation 1 shows the energy carried by a photon, where h is plank’s constant (6.63*10^(-34) Js), 

c is the speed of light (3*10^8ms^(-1)) and is the wavelength of the photon. 

A solar cell utilizes semiconducting materials that absorb the oncoming photons and convert 

them to DC power. Silicon is a semiconducting material that is commonly used by solar cells due 

to its abundance. Silicon is produced by mixing and heating sand with carbon at temperatures 

nearing 4000 degrees Celsius [6]. This process will create highly purified crystalline silicon 

which gets cut into thin silicon wafers that are doped with a P-type semiconductor such as 



Boron, and an N-type semiconductor such as phosphorus. This doping creates a P-N junction that 

allows electric flow in the solar cell which can now be used to supply a circuit with solar power 

[6]. 

The solar panel selected is a 2.5W 5V, 500mAh Monocrystalline Silicon Solar Panel by 

Allpowers. This panel can provide a maximum of 0.5 amps of current which is ideal for fast 

charging of the battery. The dimensions of the panel are 130 by 150mm which must be taken into 

consideration when designing the protective case.  

Solar panels come with an efficiency rating, meaning not all the energy absorbed by the cell is 

turned to usable power for the circuit. 

 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝜂) =
𝑃𝑚

𝑃𝑖𝑛
 

Equation 2: Efficiency of Solar Cell 

Equation 2 demonstrates how to find the efficiency of a solar cell, where Pm is the maximum 

power achieved by the panel and Pin is the radiated power input [3]. The characteristic I-V graph 

of a solar panel will help illustrate the behaviour of the cell. 

 

Figure 3: I-V characteristics of Solar Cells [4] 

 

Isc represents the maximum possible current a cell can produce while it has been shorted. Voc is 

the maximum voltage produced under an open circuit. Since an open circuit gives maximum 

voltage but no current, and short circuit will generate maximum current but not voltage, power 

can only be estimated from these values. Im and Vm are the maximum current and voltage at 

which maximum power occurs and they can be estimated by multiplying Isc or Voc by 0.9 or 0.8 

[4].  

 



B. Charging circuit 

Since it is unsafe to deliver power from the solar panel directly to the battery, a circuit must be 

implemented to handle safe delivery and cut-off of voltage and current. There were several 

circuits explored that could accomplish this task with varying pros and cons. 

The circuit considered was a DC-to-DC converter. These converters are also known as switching 

regulators as they require a switching device to step up (boost) or step down (buck) a supplied 

DC voltage. It is worth noting that as voltage is stepped down, current will increase and vice 

versa so voltage will be inversely proportional to current. However, stepping down the voltage is 

only one of the requirements. There must also be a way to cut off current once the battery has 

completed its charging cycle to prevent overcharging and damaging the battery. Furthermore, 

while it is not expected of the solar panel to draw more current than the battery can handle, it 

would nonetheless be advised to implement a current limiting feature to not supply more current 

than the battery can handle. 

The CN3083 integrated circuit (IC) was chosen for its ability to regulate voltage, account for any 

changes in input levels to maintain a constant desired output, has automatic recharging and cut-

off to not overcharge and damage the battery as well as some other features that will be 

highlighted. 

 

Figure 4: CN3083 pin layout [8] 

  

CN3083 is an 8-pin, surface-mount SOP-8 chip. Pin 1 is the TEMP pin which is responsible for 

sensing the temperature at which the battery is operating. This is to prevent any overheating and 

protect the battery from any thermal damage. The battery must come with an NTC thermistor to 

sense the temperature, otherwise, the pin must be grounded, and the temperature-sensing safety 

functions will not be in use. Pin 2 is the ISET pin, and it is used in conjunction with a resistor to 



set the current charging value up to 600mA. Pin 3 connects to the ground and pin 4 to the solar 

panel. Pin 5 is the BAT pin which connects to the positive terminal of the battery, it can also 

supply voltage to a different load to not use the battery when sufficient sunlight is present. Pins 6 

and 7 are used to display the charging status of the battery and pin 8 is the feedback pin used to 

ensure constant voltage output [8]. 

 

 

Figure 5: CN3083 Circuit Diagram 

  

Figure 5 shows a circuit diagram for the CN3083 chip in use. A diode D3 is connected between 

the solar panel and pin 4 of the chip as a safety measure to prevent backflow voltage arriving 

from the battery to the solar panel when the panel is not operational, saving the panel from any 

damage that the backflow may cause it. A 22µF bypass capacitor C1 is also utilized to filter out 

any unwanted AC noise that may be on the DC signal supplied by the solar panel. D1 and D2 are 

Light emitting diodes (LEDs) used to display when pins 6 or 7 are on. The OK pin 6 is connected 

to a green LED and once the charge termination is activated, the pin is pulled low by an internal 

switch and activates the LED, otherwise, the pin is in a high impedance state, preventing its 

operation. The CH pin 7 works the same way except in reverse where the internal switch is 

always pulled until the charge termination is active where it remains in a high impedance state. A 

resistor R1 is connected to the LEDs to prevent them from burning out as they cannot handle any 

excess voltage past their rated voltage drop of 2 volts. 

 

𝑅𝑣𝑑 = 𝑉𝑖𝑛 − 𝑉𝑓  

Equation 3: LED Resistor Voltage Drop 



 

𝑅 = (
𝑅𝑣𝑑

𝐼𝑓
) 

Equation 4: LED Resistor 

Rvd is the resistor voltage drop. Vin is the voltage of the supply, that being 5 volts of the solar 

panel, and Vf is the forward voltage of the LED which is 2 volts. 5-2 will give an Rvd of 3 volts. 

dividing the Rvd value with the forward current of the LED (10mA) will provide the resistor 

value at 300 ohms. It is best to go with a slightly higher value in the chance that the solar panel 

supplies more than its rated voltage. Iset pin 2 is also used with a resistor Rset to impose a 

maximum charging current value for the battery [8]. 

𝐼𝑐ℎ = (
𝑉𝐼𝑆𝐸𝑇

𝑅𝐼𝑆𝐸𝑇
) ⋅ 900 

Equation 5: Maximum Current Charging [8] 

Most rechargeable batteries can handle a charging current of 500mA, therefore that will be the 

Ich value used. VISET is the voltage on the Iset pin which is regulated to 2 volts. With these 

parameters provided the resistor RISET can be found by rearranging the formula to give 

3.6kohm. BAT pin 5 is the regulated 4.2 output voltage which will charge the battery. When 

there is adequate sunlight, the solar panel will power the chip and pin 5 will provide power for 

the node, however, when the solar panel is not operational, the battery will begin providing the 

required power. The feedback pin 8 will be connected to pin 5 as well as a stability capacitor C2 

to stabilize the feedback loop which will be grounded along with the temperature sensor pin 1 

and ground pin 3. A resistor can also be connected to pin 8 to reduce the desired output BAT pin 

voltage of the chip [8]. 

Vbat ＝ 4.2＋3.04×10-6×Rx 

Equation 6: Output Voltage Reduction [8] 

This chip can only handle a maximum of 6 volts before being damaged, so it is important to only 

provide an input below that threshold. Furthermore, the operating temperature is from -40° to 

85° Celsius, meaning we should not charge the battery at a high current to prevent overheating 

the chip which will likely be used in warmer climates [8]. 

 

 

 

 

 

C. Battery 



There are 2 types of commonly used rechargeable portable batteries, lithium-ion, and lithium-

polymer. The key difference between them has to do with safety, as their chemical structures are 

different. Lithium-ion batteries typically consist of 2 sides, the negative graphite electrode anode, 

a positive electrode cathode with a separator in between and a nonaqueous liquid electrolyte in 

which the lithium ions can flow through during discharge [9]. 

 

Figure 6: Battery layout [9] 

 

It is this liquid electrolyte that creates a safety concern as any leakage can cause a thermal 

runaway. A lithium polymer battery was chosen as the electrolyte is generally made of a gel-like 

substance that is less susceptible to leakage. Other than the chemical composition, these 2 

batteries are similar in operation. Lithium polymer rechargeable batteries usually possess a 

nominal voltage of 3.7V and charge up to a voltage of 4.2 with a typical constant current charge 

of 0.5C5A. Batteries are measured in C5A where A is the amps and C5 indicates the rate of 5 

hours as the cell’s capacity is not the same at all rates. That is why it is recommended to charge 

at half the rated charge current to avoid any unexpected changes in the rate of charge and 

preserve the battery. Milliamp hour (mAh) is a measurement used by batteries to indicate the 

maximum capacity of energy it can hold before dissipation is ceased.  A capacity of 1200mAh 

was selected as larger capacities will entail a larger battery body and this capacity was sufficient 

to power a low-power system while maintaining a small profile. This means that the circuit can 

drain 1.2A for one hour, however, the circuit used will only drain a few milliamps (20-40mA) 

for several seconds to transmit data every hour.   



 

D. Power Cycling Circuit 

The power cycling circuit is composed of a TPL5110 low power timer and a DMP2045U P-

channel MOSFET, both receiving power from the 3.7V battery. The TPL5110 has an integrated 

MOSFET driver, which is connected to the gate of the DMP2045U. 

 

 
Figure 7: Power Cycling Circuit Diagram 

 

This timer is intended for use in low power, energy-saving systems and has a current draw of 

only 35 nA, as well as a supply voltage range of 1.8V to 5.5V, the same range as the 

microprocessor, making it an ideal choice for this circuit.  



The TPL5110 timer has a delay of 100 ms to two hours, which can be set by changing the value 

of the resistor connected from the delay pin to ground. The value of the resistor for the desired 

time can be determined by using the formula below. 

 

Equation 7: Timer resistor calculations 

This is the resistance needed to set the desired time (T) where a, b and c are coefficients 

depending on the range of the time interval. These coefficients are given in the datasheet, as well 

as several common time and equivalent resistor values. The calculated resistance for a one-hour 

delay is 124.9 kΩ. 

Once the timer has delayed the set amount of time, it outputs a low signal to the gate of the 

MOSFET. Because this timer outputs a low signal, it is required to use a P channel MOSFET in 

conjunction with this timer, so that once the low signal is received from the timer, the current can 

flow from the battery through the MOSFET into the microprocessor. By using a MOSFET 

specifically selected for low leakage current, the power consumption when the microprocessor is 

not active is minimal. The microcontroller current draw was measured at the battery voltage of 

3.7V. The DMP2045U-7 MOSFET measured a current draw of 0 mA at the battery voltage of 

3.7V, and the relevant data sheet gives a current leakage of 10 uA at 8V. 

 

Table 1: Pico Power consumption at 3.7V 

Mode Current (mA) 

Standard 28.44 

Sleep 2.2 

Power Cycling 0.00 

 



 

Figure 8: Power Consumption Graph 

 

 

E. Microprocessor 

The microprocessor selected for this project was the raspberry pi pico. This microprocessor 

excels in several of the most important criteria decided upon for the selection of a 

microprocessor, such as cost and power consumption. The incredibly low cost of $4 per pico is 

very relevant to the goal of creating a low-cost system.  

The different configurations of GPIO pins on the pico are compatible with multiple types of data 

transfer, such as I2C, which allowed a wider selection of choices for the attached peripherals. 

The soil moisture and temperature sensor are connected to the pico via I2C and the LORA is 

connected via SPI. 

An additional benefit of this number of GPIO pins is that several additional sensors or other 

components can be added if needed later without increasing the complexity of the circuit. It also 

means that a wide range of sensors can be added to the sensor node to obtain new kinds of 

information in future updates. 

 



 

Figure 9: Raspberry Pico Pinouts [16] 

 

The sensor and LORA receive power from the 3.3V output pin, are grounded to the ground pins, 

and transmit data through the I2C and SPI pins respectively. 

The pico itself receives power from the battery connected to the power cycling circuit, connected 

to Vsys. This is the main system input voltage used to power the pico. An onboard voltage 

regulator accepts any voltage from 1.8 to 5.5V and outputs 3.3V, the system voltage for the pico. 

This means that there is no need for an additional voltage regulator between the pico and the 

battery. 

Additionally, the raspberry pi pico is very compatible with the raspberry pi 4 selected as the 

base, as they are from the same manufacturer.   

 

 

  



F. Sensors 

The sensor nodes are a crucial part of this design as it enables the collection and transmission of 

measured data from the agricultural area to the central hub where the data can be further 

analyzed. The sensor used in this design is an Adafruit STEMMA Soil Sensor. This is a 

capacitive soil moisture sensor with an onboard temperature sensor. A capacitive soil moisture 

sensor was selected, as opposed to a resistive sensor, as these nodes are meant to be self-

sufficient for extended periods. Capacitive moisture sensors erode much slower than resistive 

versions, as no exposed metal can be corroded by the soil over time. Resistive soil moisture 

sensors also don’t work as well in several non ideal conditions, such as loose or rocky soil. 

The node antenna and receiver circuit used was the RFM95W Low Power Long Range 

Transceiver module. This transceiver module was chosen due to its low power consumption, 

robustness to interference and long range. The major downside is the cost of $20 per module, 

which is the largest single contributor to the cost of the nodes. 

 

Figure 10: Node and Sensor Layout 

 

The two components are connected to the node raspberry pico. The communication protocol 

used between the sensor and the microcontroller is an I2C protocol. It is a simple, flexible, and 

reliable serial communication protocol, whose main advantage is the ability to connect multiple 

devices to the same bus. The transceiver is connected to the microcontroller using SPI 



communication protocol. This is a synchronous serial communication protocol commonly used 

for short-distance communication, its key advantage is its high data transfer rates and full-duplex 

support. 

The output of the sensor values is read from the STEMMA register. The soil sensor has a 

recommended library which makes it easier to collect the readings from the sensor. The format 

of the output is a numerical variable. 

The RFM95 transceiver is a versatile device that can operate in multiple transmission modes, 

including LoRa, FSK, and GFSK. However, for this design, only the LoRa transmission mode 

was utilized. The power rating of the RFM95 during LoRa transmission is measured at 13 dBm 

which can be adjusted up to 23 dBm during high-power transmission mode. The supply voltage 

used was a 3.3 V power from the microcontroller. The transmission power impacts the range and 

reliability of the communication link. It was important to ensure that the power output is set to an 

appropriate level to optimize the performance of the RFM95 transceiver. 

 

 

G. The Central Hub and Communication System 

At the core of this design lies the central hub, which serves as the primary node responsible for 

coordinating and managing the various subsystems and peripheral devices. The components of 

the central hub are as follows, a microprocessor, an OLED display screen and an RFM95W 

transceiver module. Below is a System block diagram for the communication unit and central 

hub. 

 

Figure 11: Central Hub Circuit Diagram [5] 



The following are the requirements specifications for the communication system. 

1. Range: The communication system must be capable of providing a wireless 

communication range of at least 1 km between the central hub and each sensor node. 

2. Power Consumption: The power consumption of the communication system shall not 

exceed 50 mW to ensure efficient energy usage. 

3. Collision Avoidance: The system must have a protocol in place to avoid data collision 

between the central hub and sensor nodes. Preferably, a scheduler shall be implemented 

to ensure that data transmissions do not overlap. 

4. Channel Selection: Proper channel selection and time blocking shall be implemented to 

ensure optimal communication performance and minimize interference. 

5. Message Acknowledgement: The system must provide message acknowledgement to 

ensure that data transmissions are successful and to identify and re-transmit lost data 

packets. 

 

LoRa Transceiver (RFM95 Module) 

LoRa, or Long Range, is a type of wireless communication protocol that operates at low 

frequencies to enable long-range, low-power communication for the Internet of Things (IoT) and 

other applications. Unlike other wireless communication protocols such as WiFi or Bluetooth, 

which operate at higher frequencies and have shorter ranges, LoRa uses spread-spectrum 

modulation and a unique chirp spread spectrum (CSS) modulation technique to enable 

communication over distances of several kilometres. 

LoRa technology is typically used for low-bandwidth applications where longer range and lower 

power consumption are critical, such as environmental monitoring, asset tracking, and smart city 

infrastructure. The range of communication for LoRa can vary depending on the conditions, but 

in ideal conditions, it can be up to several kilometres. 

In terms of signal quality, LoRa typically has a signal-to-noise ratio (SNR) of around 10 dB, with 

a bit error rate (BER) of less than 1%. 

The packet structure for LoRa communication involves a preamble, sync word, address byte, 

payload and cyclic redundancy check (CRC), with the length of each field determined by the 

specific LoRa protocol being used. There are three types of packet structures used. 

Fixed Length Packet Format: 

To select a fixed length packet format, set the bit PacketFormat to 0. If the value of 

PayloadLength is greater than 0, the packet format will be set. The payload length is limited to 

2047 bytes and it contains the following fields: 



 

Figure 12: Fixed length packet format [13] 

 

Variable Length Packet Format: 

The variable length packet format is chosen if the bit PacketFormat is set to 1. This format is 

useful for applications where the packet length is unknown beforehand and can vary over time. 

In such cases, the transmitter must send the length of information along with each packet to 

ensure the proper operation of the receiver. It contains the following fields: 

 

Figure 13: Variable length packet format [13] 

 

Unlimited Length Packet Format: 

The unlimited length packet format is chosen by setting the bit PacketFormat to 0 and the 

PayloadLength to 0. With this format, the user can transmit and receive packets of any length, 

and the PayloadLength register is not utilized for counting the length of the bytes transmitted or 

received in Tx/Rx modes. It contains the following fields: 



 

Figure 14: Unlimited length packet format [13] 

 

The modulation and demodulation of LoRa signals is a complex process that involves several 

stages. At first, the modulator takes the digital data and transforms it into a waveform. This 

waveform is then spread across a wider frequency band using a spreading factor (SF). By 

increasing the SF, the modulator can create a more spread-out signal that is less susceptible to 

interference and thus has an improved range. 

On the other end of the communication channel, the demodulator uses a combination of matched 

filtering and correlation techniques to recover the original data from the received signal. This 

process is crucial in extracting the original data from the modulated signal, which has been 

spread out over a wider frequency band. By using the matched filtering technique, the 

demodulator can identify the frequency content of the signal, which is then used to recover the 

original data. 

Overall, the modulation and demodulation of LoRa signals is a critical process in ensuring the 

reliable transmission of data over long distances with minimal interference. The use of spreading 

factors and correlation techniques in LoRa technology helps to improve the robustness and range 

of the communication system. LoRa technology provides a powerful and flexible communication 

solution for low-power, long-range applications, enabling new possibilities for IoT and other 

industries. 

 

Communication Protocol 

The protocol is based on a request-response mechanism where the sending device requests a 

channel from the receiving device to transmit data, and the receiving device responds with an 

acknowledgment (ACK). Once the sending device has received the ACK, it sends the actual 

data. If the ACK is not received within a specified time, the sending device retries sending the 

request or data. 

Synchronization of the request-response was done using a transmission window. A transmission 

window refers to a specific time interval within which a wireless communication device or 

system is allowed to transmit data. During the transmission window, the sensor node would be 

able to transmit data to the central hub, and the central hub would be able to receive the data. 



Once the transmission window closes, the sensor node would stop transmitting data until the next 

scheduled transmission window opens. This approach can help to reduce the likelihood of data 

collisions and other issues that can arise from simultaneous transmissions by multiple wireless 

devices. 

In the transmission window approach, each device is assigned a specific time slot within which it 

can transmit its data. These time slots are carefully scheduled to ensure that no two devices 

transmit their data at the same time, which helps avoid packet collisions. For example, if there 

are four devices, each device might be assigned a time slot of 10 milliseconds, starting from 0 

milliseconds for device one, 10 milliseconds for device two, 20 milliseconds for device three, 

and 30 milliseconds for device four. During its assigned time slot, a device can transmit its data 

without interference from other devices, which helps avoid collisions. 

In this communication design, a transmission window of 60 minutes was established to coincide 

with the time that soil sensors collect environmental data. By implementing time-scheduled 

requests, data transmissions are organized to avoid packet collisions that can cause network 

congestion and reduce network performance. This allows each sensor node to transmit data to the 

central hub without interference from other nodes, thereby ensuring data integrity. 

To optimize data transmission efficiency, the data packet format used a combination of variable 

and unlimited formats. When sensor data and acknowledgment messages are sent to the central 

hub, a variable format is used to accommodate the varying data size of each sensor node. 

However, in situations where the fault log data exceeds 2047 bytes, an unlimited data format is 

utilized to ensure that all data is transmitted. This approach guarantees that data is not lost due to 

truncation and that all data is transmitted reliably to the central hub. By implementing this 

communication design, the soil sensor network can operate effectively and provide accurate 

environmental data for agricultural applications. Additionally, CRC is enabled on all packet 

modes except the unlimited mode. 

 



Software Configuration and Setup  

 

Figure 15: Software Overview Diagram 

 

This Software functionality of the design was implemented as follows 

• Node Side 

o Transceiver 

o Collect sensor data 

• Central Hub 

o Transceiver 

o Display 

o Server API 

o Storage 

• Android Application 

o Recieve API data 

o Display UI 

This was implemented using the flowchart below. 



 

Figure 16: Flowchart for software implementation. 

 

See the Appendix for full implementation. 

 

 

 

 



H. Display and Storage 

Storage 

Sensor data is stored in a CSV file on the central hub, with new data added to the end of the file. 

After some time, data that is over 6 months old are deleted to keep the files clean. Additionally, 

there is a fault log that keeps track of any instances of data or channel failures for 

troubleshooting purposes. The CSV files can be accessed by the Android app through a Flask 

API, and the most recent data is sent to an OLED display. 

 

Display 

With the use of an I2C protocol, the OLED display can easily communicate with the central hub 

and display the data received from the sensor node. The attached picture shows a sample display 

of sensor information. 

 

Figure 17: Display Output 

 

Android Application 

The Android app implementation is designed to retrieve data from a Flask API that is hosted on 

the central hub. The app is designed to display two screens. The first screen is a dashboard 

display that provides an overview of all sensor node's most recent data. The second screen is 

accessed by clicking on a sensor node's data. This opens the second page that displays 24-hour 

data from each sensor node. 



The app uses RESTful APIs to connect with the Flask API, retrieving sensor data from the 

Raspberry Pi. The data is displayed in a visually appealing and easy-to-understand dashboard 

format on the first screen. The second screen displays detailed information on a specific sensor 

node, providing a graphical representation of the data over the past 24 hours. The app is user-

friendly and easy to navigate, providing agricultural users with accurate environmental data that 

they can use to optimize crop production. 

See screenshots of the Android app implementation below 

 

Figure 18: Android Application Preview 

   

 



6. Results and validation 

A test was conducted to observe the charging behaviour of the battery and whether the CN3083 

chip would cut off charging as intended. A constant voltage supply of 5 volts DC was provided 

to the chip and the results were tabulated into a graph. 

 

Figure 19: Battery Voltage vs Supplied Current Graph 

 

The graph in Figure X displays the battery voltage in volts and current supplied in milliamps by 

the CN3083 chip. The chip maintains a steady supply current of approximately 550 to 500 

milliamps. As the voltage of the battery increases, the current supplied begins to gradually 

decrease until the voltage reaches the maximum point of slightly over 4.2V, after which the 

current decreases drastically until it stabilizes at 0.008amps. That value of current does not 

further charge the battery as the voltage begins dropping regardless as shown at the 0-amp point. 

It is also at this point that the red LED turns off and the green LED is enabled by the CN3083 

chip which confirms the correct operation of the chip. 

The communication range was tested up to a distance of approximately one kilometre, with a 

focus on testing signal range and detection time. Within the test range, the signal was received 



with delays of less than one second. The image below depicts a successful data transmission 

from the sensor node to the central hub. 

 

Figure 20: Successful communication from Node to Hub 

 

7. Progress and Revisions 
 

 

Figure 21: Revised Gantt Chart 

 

The Gantt chart for this project was changed to reflect the new workflow that was devised after 

working on the project for some time. The workflow for designing the sensor node, central hub 

and communication protocol was altered to allow for concurrent work on the communication 

protocol. The timeline for procuring components was moved up, as many of the needed 

components were decided on earlier than expected. Once construction of the project began, 



additional purchases had to be made for miscellaneous components, such as adapters. The 

timeline for integrating the components was decreased, as it went much better than expected. 

 

 

Figure 22: Unrevised Original Gantt Chart 

 

The overall design of the sensor node underwent one significant revision, which involved the 

addition of a voltage regulator for the battery and a new control circuit to cycle power to the 

Arduino.  

 

An issue encountered with the power cycling circuit was that when connected to the battery at 

full charge, the power cycling circuit would not always receive the done signal and turn off 

properly. A stopgap solution was to send the done signal multiple times until the power to the 

pico was cut off. After lab analysis, it was theorized that this issue was due to the voltage 

difference between the 4.2V fully charged battery and the 3.3V output of the pico 

microcontroller. This issue is planned to be resolved by decreasing the voltage coming to the 

timer from the battery, through the use of a diode.  

  



.

 

Figure 23: Linear voltage regulator diagram 

  

Figure 7 shows a basic buck converter circuit to step down an input of 5 volts to an acceptable 

battery charging range of 3.7 to 4.2 volts. Component M1 is a MOSFET that will behave as a 

switching device when a pulse is supplied to the gate terminal. When the switch is closed, the 

inductor L1 will charge and store energy as current flows through the inductor and to the battery 

load and capacitor C1 after which it will return to the negative terminal of the DC supply V1. 

  

When the switch is open, the inductor will behave as the power supply as it transfers the energy 

it has stored to the load and capacitor. The power will now loop back through the diode (D1) 

until the switch returns to a closed state. The purpose of the capacitor is to filter any AC 

component at the output to maintain a steady DC supply to the load. This constant switching will 

ensure that only a certain amount of voltage is supplied to the load. The voltage will rise to a 

certain point, once that point is exceeded, the switch will open, and the inductor will keep 

supplying the voltage to the load until the switch is closed. One problem with this circuit is the 

fact that it is a linear regulator, meaning it does not compensate for a change in input voltage. 

This is not ideal as the solar panel is expected to supply a varying range of voltages depending 

on sunlight exposure, providing too much voltage could damage the battery and not enough 

voltage will not initiate charging. Another issue is supplying a pulse supply to the gate as there 

will only be one source of DC power at the node. This means that another circuit is required to 

convert DC to a pulse through the gate to drive the MOSFET. 



 

 

Figure 24: Linear regulator with pulsing timer 

 

An attempt to simulate a pulse using a 555 timer was successful as the timer cuts off and on 

supply to the gate, however, the circuit requires many more components which will translate to a 

larger overall size and an involved troubleshooting process if one component fails. The switching 

will also happen at a slower rate as the speed is limited by the timers’ capabilities. This circuit is 

also still a linear regulator and is missing safety features such as voltage cut-off when charging is 

complete. To provide compensation for input voltage change, a comparator amplifier should be 

used to compare the input with the output, however, this will contribute to a larger circuit and 

higher cost. Ultimately, a battery charging IC was decided upon due to the reduction of 

components needed, which will lead to a reduction in size and greater portability, as well as a 

cost reduction and added simplicity which makes troubleshooting potential issues easier.  

 

 

 

 

 

 

 



8. Economic and profitability analysis 

The price of the individual central hub and sensor nodes are broken down below. The price for 

the PCB and protective case used in the sensor node are conservative estimates.  

Table 22: Cost per Node 

Component Quantity Unit Price Price 

Raspberry Pi Pico x1 $4 $4 

STEMMA Soil Sensor  x1 $11 $11 

TPL5110 Timer x1 $1.95 $1.95 

DMP2045U P-channel MOSFET x1 $0.69 $0.69 

RFM95W LORA Radio Transceiver x1 $29.32 $29.32 

Spring Antenna x1 $0.95 $0.95 

CN3083 battery charger chip x1 $1.33 $1.33 

2.5W 5V/500mAh Solar Panel x1 $9 $9 

3.7V 250mAh Li-Polymer Battery  x1 $9.52 $9.52 

SS14 Diode x1 $0.58 $0.58 

LEDS x2 $0.50 $1 

Resistors x3 $0.10 $0.30 

Capacitors x2 $0.15 $0.30 

PCB x1 $2 $2 

Protective Case x1 $3 $3 

 

Total 

 

x19 

 

$74.94 

 

 

A sensor node that performs similar functions, collecting data about soil moisture and 

temperature, is available on Digi key, although the T0005986 KIWI agricultural sensor also 

detects air humidity. However, this agricultural sensor retails for $244 per node. This is more 

than three times the price of our current sensor node design. This demonstrates the success of 

making our design low-cost, as even after allowing margins for manufacturing and profit, our 



sensor node is still significantly cheaper. This should significantly aid the goal of helping those 

most impacted by food insecurity. Additionally, given the price of the KIWI system, an air 

humidity sensor could be added to the sensor nodes while still keeping them significantly 

cheaper than the competitor’s version. 

 
Table 33: Cost per Central Hub 

Cost per Central Hub 

Component Quantity Price 

Raspberry Pi 4B x1 $48 

RFM95W LORA Radio Transceiver x1 $29.32 

Spring Antenna x1 $0.95 

Monochrome 0.91" 128x32 I2C OLED Display x1 $12.50 

Raspberry Pi 4 Power Supply Cable x1 $8 

Total x5 $98.77 

The price of the central hub is larger than that of the nodes, mainly due to the need for a 

microcontroller, which is significantly more expensive than the microprocessor used in the 

nodes. The larger price is offset by the fact that only one central hub is required. 

 

9. Future Plans 

More sensors, such as a soil nitrogen sensor or an air humidity sensor, can be added with 

reasonable ease given the nature of the pico microcontroller, the only concern is the price of the 

sensors themselves. 

The communication protocol design is continuously evolving to meet the growing demands of 

our users. In the future, various new features will be introduced to enhance the functionality and 

security of the protocol. These features include: 

• Asynchronous Communication: To provide users with the ability to communicate with 

their devices at any time, the protocol will incorporate asynchronous communication that 

enables data transmission beyond predefined timeframes, recognizing the importance of 

flexibility and expediency in communication. 

• Security Key: A security key feature will be implemented to prevent hijacking by 

unauthorized users, ensuring that only authorized personnel have access to the protocol. 

This feature acknowledges that security is of paramount concern to users. 



• Android App Sensor Set Point Adjustment: An Android app will be introduced to allow 

users to remotely adjust their sensor set points, providing convenience and accessibility 

while making operations more efficient. 

Due to time constraints, a prototype board was utilized in the final design. Prototype boards 

possess a smaller thickness than conventional breadboards. The thickness of prototype boards is 

usually 1mm while breadboards are around 8 to 9mm. This will allow for a smaller overall node 

to maintain a portable frame. A printed circuit board (PCB) has been designed to further save 

space and easily mass-produce nodes without needing to construct prototype boards for each. 

   

Figure 25: PCB layout 

Furthermore, surface mount devices (SMD) can be used instead of through-hole components to 

further reduce the body of the PCB. 



A rudimentary case was designed to protect the node components from harm in the field. The 

case will be 159x149mm due to the size of the solar panel selected. The case will have an open 

top where the solar panel will rest and act as a cover for the internals. To further protect the solar 

panel, the case must be mounted higher up to avoid accidental damage. It will be attached to a 

steel tube that is a few inches in length. This tube will protect the sensor wires that will be routed 

through from the bottom of the case to the tube attached and finally to the soil. Since heat rises, 

opening slits should be placed near the top of the case to prevent overheating, however, this will 

expose the internals to outside elements such as rain. Also, water may seep through the solar 

panel to the internals if it is not properly attached, so further revisions must be made to protect 

the internals from water damage. Also, the case can be made smaller if a smaller solar panel is 

used as well as PCB and SMD integration for the internals. 

 

Figure 26: Protective Case Front view 



 

Figure 27: Protective Case Top view 
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11. Appendix 
Sensor Node Code 

import board, busio, digitalio 
import adafruit_rfm9x 
import time, json 
from adafruit_seesaw.seesaw import Seesaw 
 
channel_ack = False 
data_ack = False 
sens_data = 0 
fault_log = [] 
 
###Initialize pins and objects 
def setup(): 
    global ss, rfm9x, done 
    #Soil sensor pins 
    i2c = busio.I2C(scl=board.GP1, sda=board.GP0)  # uses board.SCL and 
board.SDA 
    #RFM95 pins 
    spi = busio.SPI(board.GP18, MOSI=board.GP19, MISO=board.GP16) 
    cs =digitalio.DigitalInOut(board.GP17) 
    reset = digitalio.DigitalInOut(board.GP20) 
    g0 = digitalio.DigitalInOut(board.GP7) 
 
    ###Initialize objects 
    ss = Seesaw(i2c, addr=0x36) 
    rfm9x = adafruit_rfm9x.RFM9x(spi, cs, reset, 915.0) 
    #Initialize rfm9x parameters 
    rfm9x.enable_crc = True #Enable CRC Checking 
    rfm9x.node = 1   # Node address 
    rfm9x.destination = 0    #Destination address 
     
    #this is the timer off (done) signal code 1/2 
    done = digitalio.DigitalInOut(board.GP13) 
    done.direction = Direction.OUTPUT 
    done.value = False 
 
#Read moisture and temperature levels 
def read_sens(): 
    global sens_data 
    moist = ss.moisture_read() 
    temp = ss.get_temp() 
    data = [ {'Time': int(time.time()), 'Temperature': temp, 'Soil Moisture': 
moist} ] 
    sens_data = bytearray(json.dumps(data).encode('utf-8')) 
    #return sens_data 
 



#Channel request 
def Channel_req(): 
    global channel_ack 
    channel_ack = False 
    rfm9x.send('1 Channel request'.encode('utf-8'))     #send request to Hub 
    channel_ack_byte = rfm9x.receive(timeout=0.5)      #listen for approval 
message 
    if channel_ack_byte is not None: 
        channel_ack = True      #channel_ack_byte.decode('utf-8') 
        #print('Received: {0}'.format(channel_ack)) 
    else: 
        channel_ack = False 
        print('Channel Request Failure') 
    #return channel_ack 
 
#Send data to central hub 
def tx_data(channel_ack, sens_data): 
    global data_ack 
    data_ack = False 
    if channel_ack: 
        rfm9x.send(sens_data)       #send data 
        #Listen for ACK 
        ACK_data_byte = rfm9x.receive(timeout=1.0) 
        if ACK_data_byte is not None: 
            ACK_data = ACK_data_byte.decode('utf-8') 
            print('Received: {0}'.format(ACK_data)) 
            data_ack = True 
        else: 
            print('Data ACK failure') 
            data_ack = False 
    #return data_ack 
 
# Fault Handling 
def Fault_log(channel_ack, data_ack, sens_data): 
    global fault_log 
    if not channel_ack or not data_ack: 
        log = json.loads(sens_data.decode('utf-8')) 
        fault_log.extend(log) 
        print(fault_log) 
    else: 
        byte = bytearray(json.dumps(fault_log).encode('utf-8')) 
        rfm9x.send(byte)       #send the fault log 
        print("Fault log sent") 
        #Listen for ACK 
        Fault_ACK_byte = rfm9x.receive(timeout=5.0) 
        if Fault_ACK_byte is not None: 
            Fault_ACK = Fault_ACK_byte.decode('utf-8') 
            print('Fault ACK Received : {0}'.format(Fault_ACK)) 
            fault_log = [] 



            byte = [] 
        else: 
            print('Fault log Transmission FAILURE') 
             
#RFM9x Sleep function 
def RFM9x_sleep(sleep_time): 
    rfm9x.sleep() 
    time.sleep(sleep_time) 
    rfm9x.sleep() 
 
 
# Main code to run indefinetely 
def main(): 
    global sens_data, channel_ack, data_ack 
    while True: 
        read_sens() # Read sensor values 
        Channel_req() # Request central hub channel 
        if channel_ack: 
            # Transmit sensor data to central hub 
            tx_data(channel_ack, sens_data) 
            if not data_ack: # retry data transmission on ACK Failure 
                for retry in range(1,3): 
                    tx_data(channel_ack, sens_data) 
                    if data_ack: 
                        break  # exit the loop if data_ack is True 
        else: # retry channel request on ACK Failure 
            for retry in range(1,4): 
                Channel_req() 
                if channel_ack: 
                    tx_data(channel_ack, sens_data) 
                    if not data_ack: # retry data transmission on ACK Failure 
                        for retry in range(1,4): 
                            tx_data(channel_ack, sens_data) 
                            if data_ack: 
                                break  # exit the loop if data_ack is True 
                    break  # exit the loop if channel_ack is True 
                 
                time.sleep(5)    # delay 5s before next channel request  
retry 
        #add to fault log 
        Fault_log(channel_ack, data_ack, sens_data) 
        #sleep till next read 
        RFM9x_sleep(15) #30 seconds 
        done.value = True 
     
setup() 
main() 

 



Central Hub Code 

Main hub code (main.py) 

import board, busio, digitalio 
import adafruit_rfm9x 
from PIL import Image, ImageDraw, ImageFont 
import adafruit_ssd1306 
import time, json 
import threading 
 
from store import data_store, Fault_log, data_clean, dashboardData, nodeData 
from server import create_App, check_values 
 
 
#Define Transmission Flags 
channel_sel = False 
data_ack = False 
 
 
## ************* Initialization Function ************* ## 
def  setup(): 
    global rfm9x, oled, draw, font, image, heading, sensor1, sensor2 
    #RFM95 Initialization 
    spi = busio.SPI(board.SCK, MOSI=board.MOSI, MISO=board.MISO) 
    cs =digitalio.DigitalInOut(board.CE1) 
    reset = digitalio.DigitalInOut(board.D25) 
    g0 = digitalio.DigitalInOut(board.D24) 
    rfm9x = adafruit_rfm9x.RFM9x(spi, cs, reset, 915.0) # rfm9x object module 
    rfm9x.enable_crc = True #Enable CRC Checking 
    rfm9x.node = 0   # Central hub address 
 
    #Display initialization 
    WIDTH = 128 
    HEIGHT = 32   
    BORDER = 5 
    # Define the Pins of the OLED 
    oled_reset = digitalio.DigitalInOut(board.D4) 
    i2c = board.I2C()  # uses board.SCL and board.SDA 
    # Initialize oled object 
    oled = adafruit_ssd1306.SSD1306_I2C(WIDTH, HEIGHT, i2c, addr=0x3c, 
reset=oled_reset) 
    # Create blank image for drawing. 
    image = Image.new("1", (oled.width, oled.height)) 
    # Get drawing object to draw on image. 
    draw = ImageDraw.Draw(image) 
    # Load default font. 
    font = ImageFont.load_default() 
 
    # Initialize the app server with the last saved sensor data 



    check_values() 
    server_run_thread = threading.Thread(target=create_App) 
    server_run_thread.daemon = True 
    server_run_thread.start() 
 
## ************* Transceiver Functions ************* ## 
# Channel selection 
def Channel_sel(): 
    global ch_sel 
    ch_sel = False 
    print('Listening for Request') 
    channel_req_byte = rfm9x.receive(timeout=20.0)  #listen for node request 
    if channel_req_byte is not None: 
         channel_req = channel_req_byte.decode('utf-8') 
         if int(channel_req[0]) == 1: 
            rfm9x.destination = 1 
            rfm9x.send('Ch1 ACK'.encode('utf-8')) 
            print('Ch1 ACK sent') 
            ch_sel = True 
         elif int(channel_req[0]) == 2: 
            rfm9x.destination = 2 
            rfm9x.send('Ch2 ACK'.encode('utf-8')) 
            print('Ch2 ACK sent') 
            ch_sel = True 
         else: 
            rfm9x.destination = 255 
            print("sent to all") 
            ch_sel = False 
    else: 
         print('Channel Select Failed') 
         ch_sel = False 
# Receive packet from sensor node 
def rx_data(): 
    global data_ack, temp, moist 
    data_ack = False 
    moist = 0 
    temp = 0 
    print('Listening for data...') 
    sens_data_byte = rfm9x.receive(timeout=5.0) 
    if sens_data_byte is not None: 
        sens_data = sens_data_byte.decode('utf-8') 
        print('Received: {0}'.format(sens_data)) 
        data_list = json.loads(sens_data) 
        data_dict = data_list[0] 
        temp = data_dict["Temperature"] 
        moist = data_dict["Soil Moisture"] 
        if moist or temp != 0: 
            rfm9x.send("Data ACK".encode('utf-8')) # send ACK 
            data_ack = True 



            return sens_data 
    else: 
        print('Data NOT recieved') 
        data_ack = False 
        return 0 
# Listen for any fault data 
def RxFault(): 
    print('Listening for Fault data...') 
    fault_data_byte = rfm9x.receive(timeout=5.0) 
    if fault_data_byte is not None: 
        rfm9x.send("Fault ACK".encode('utf-8')) # send ACK 
        fault_data = fault_data_byte.decode('utf-8') 
        print('Received: {0}'.format(fault_data)) 
        return fault_data 
    else: 
        print('No Fault Data recieved') 
# Sleep mode for rfm9x 
def Rfm9x_sleep(sleep_time): 
    rfm9x.sleep() 
    time.sleep(sleep_time) 
    rfm9x.sleep() 
# Main Channel Selection and receiver code with error retrials 
def Channel_Selection(): 
    global ch_sel, data_ack, temp, moist, rfm9x, node1, node2 
    Channel_sel()   #Listen for node requests 
    if ch_sel: 
        data = rx_data() # Receive sensor data 
        if not data_ack: 
            data = rx_data() 
            if data_ack: 
                fault = RxFault() # Listen for previous fault data 
                #update csv files 
                if rfm9x.destination == 1: 
                    data_store(data, 'node1.csv') 
                    if len(fault) != 0: 
                        data_store(fault,'node1.csv') 
                    node1 = True 
                elif rfm9x.destination == 2: 
                    data_store(data, 'node2.csv') 
                    if len(fault) != 0: 
                        data_store(fault,'node2.csv') 
                    node2 = True 
        else: 
            fault = RxFault() # Listen for previous fault data 
            #update csv files 
            if rfm9x.destination == 1: 
                data_store(data, 'node1.csv') 
                if len(fault) != 0: 
                    data_store(fault,'node1.csv') 



                node1 = True 
            elif rfm9x.destination == 2: 
                data_store(data, 'node2.csv') 
                if len(fault) != 0: 
                    data_store(fault,'node2.csv') 
                node2 = True 
    else:   # Retry channel Selection 
        Channel_sel() 
        if ch_sel: 
            data = rx_data() # Receive sensor data 
            if not data_ack: 
                data = rx_data() 
                if data_ack: 
                    fault = RxFault() # Listen for previous fault data 
                    #update csv files 
                if rfm9x.destination == 1: 
                    data_store(data, 'node1.csv') 
                    if len(fault) != 0: 
                        data_store(fault,'node1.csv') 
                    node1 = True 
                elif rfm9x.destination == 2: 
                    data_store(data, 'node2.csv') 
                    if len(fault) != 0: 
                        data_store(fault,'node2.csv') 
                    node2 = True 
            else: 
                fault = RxFault() # Listen for previous fault data 
                #update csv files 
                if rfm9x.destination == 1: 
                    data_store(data, 'node1.csv') 
                    if len(fault) != 0: 
                        data_store(fault,'node1.csv') 
                    node1 = True 
                elif rfm9x.destination == 2: 
                    data_store(data, 'node2.csv') 
                    if len(fault) != 0: 
                        data_store(fault,'node2.csv') 
                    node2 = True 
## End of Transceiver Functions 
 
## ************* Display Function ************* ## 
def Display(page, temp, moist): 
    global oled, draw, font, image 
    # Clear display and set background 
    oled.fill(0) 
    oled.show() 
    # Draw the time 
    current_time = time.strftime("%H:%M") 
    draw.text((0, 0), current_time, font=font, fill=255) 



    # Draw sensor 
    sens = "Sensor " +str(page) 
    (font_width, font_height) = font.getsize(sens) 
    draw.text((oled.width - font_width, 0), sens, font=font, fill=255) 
    # Draw the temperature 
    text = "Temperature: {:.1f} °C".format(temp) 
    (font_width, font_height) = font.getsize(text) 
    draw.text(((oled.width - font_width) // 2, ((font_height + 2 )* 2) // 2), 
text, font=font, fill=255) 
    # Draw Soil Moisture  
    text = "Moisture: {:.1f}".format(moist) 
    (font_width, font_height) = font.getsize(text) 
    draw.text(((oled.width - font_width) // 2, (oled.height - font_height)), 
text, font=font, fill=255) 
 
    # Display image 
    oled.image(image) 
    oled.show() 
## End of Display Function 
 
## ************* App Server Functions ************* ##  
 
def main(): 
    global ch_sel, data_ack, temp, moist, rfm9x, node1, node2 
    while True: 
        Channel_Selection() 
        if ch_sel and data_ack: #data received correctly 
            Channel_Selection() #repeat for a second node 
            if not(ch_sel and data_ack): 
                Fault_log(rfm9x.destination, ch_sel, data_ack) 
        else: 
            Fault_log(rfm9x.destination, ch_sel, data_ack) 
         
        #=====================# 
        #update serverside code         
        check_values() 
        #=====================# 
         
        # Display the most recent values on the oled screen 
        header = dashboardData() 
        sensor_1 = header[0] 
        sensor_2 = header[1] 
               
        temp1 = float(sensor_1['Temperature']) 
        moist1 = float(sensor_1['Soil Moisture']) 
        temp2 = float(sensor_2['Temperature']) 
        moist2 = float(sensor_2['Soil Moisture']) 
        display_counter = 0 
        page = 1 



        while display_counter <10: 
            if page == 1: 
                Display(page, temp1, moist1) 
                page = 2 
            else: 
                Display(page, temp2, moist2) 
                page = 1 
            time.sleep(5) # Swap pages every 5 seconds 
            display_counter += 1 
             
## Run the program 
setup() 
main()  

Storage code (store.py) 

import csv, json, time 
 
time_threshold = 15780000       #6 months to retain data 
 
def data_store(sens_data, filename): 
    field_names = ['Time', 'Temperature', 'Soil Moisture'] 
    load_data = json.loads(sens_data) 
     
    with open(filename, mode='a', newline='') as csv_file: 
        writer = csv.DictWriter(csv_file, fieldnames=field_names) 
        for row in load_data: 
            writer.writerow(row) 
 
def data_clean(filename, time_threshold): 
    clean_flag = False 
    while not clean_flag: 
        #Data delete after  
        with open(filename, 'r') as file: 
            reader = csv.reader(file) 
            data = list(reader) 
        
        oldest_timestamp = int(data[1][0]) 
 
        if time.time() - oldest_timestamp > time_threshold: 
            del data[1] 
            #field_names = ['Time', 'Temperature', 'Soil Moisture'] 
 
            with open(filename, 'w') as file: 
                # headerwrite = csv.DictWriter(file, field_names) 
                # headerwrite.writeheader() 
                 
                writer = csv.writer(file) 
                writer.writerows(data) 
        else: 



            clean_flag = True 
 
def nodeData(filename): 
    with open(filename, 'r') as file: 
        # Create a CSV reader object 
        reader = csv.DictReader(file) 
        entries = [] 
 
        # Iterate through the rows in reverse order, up to 24 rows 
        for row in reversed(list(reader)): 
            if len(entries) >= 24: 
                break 
            # Convert the row to a dictionary and add it to the entries list 
            entries.append(dict(row)) 
    return entries 
 
def dashboardData(): 
    heading = [] 
    # Loop through the two CSV files 
    for file_id, filename in enumerate(['node1.csv', 'node2.csv'], 1): 
 
        # Open the CSV file for reading 
        with open(filename, 'r') as file: 
            # Create a CSV reader object 
            reader = csv.reader(file) 
 
            # Get the last row in the CSV file 
            last_row = None 
            for row in reader: 
                last_row = row 
 
            # Create a dictionary from the last row and add the file id 
            entry = {'Sensor_id': file_id, 'Time': last_row[0], 
'Temperature': last_row[1], 'Soil Moisture': last_row[2]} 
 
            # Add the dictionary to the data list 
            heading.append(entry) 
    return heading 
 
def Fault_log(node_num, ch_sel, data_ack): 
    print('Fault Logging ...') 
    if not(data_ack and ch_sel) is True: 
        # Open the CSV file for writing 
        with open('fault_log.csv', mode='a', newline='') as csv_file: 
            # Create a CSV writer object 
            writer = csv.writer(csv_file) 
            current_time = int(time.time()) 
             
            # Write the time and fault type to the CSV file 



            writer.writerow([node_num, current_time, 'Fault: Channel 
Selection' if not ch_sel else 'Fault: Data Not Received']) 

 

Server-side code (server.py) 

# Import the Flask and jsonify classes from the flask module 
from flask import Flask, jsonify 
from apscheduler.schedulers.background import BackgroundScheduler 
from store import dashboardData, nodeData 
 
 
def check_values(): 
    global heading, sensor1, sensor2 
    heading = dashboardData() 
    sensor1 = nodeData('node1.csv') 
    sensor2 = nodeData('node2.csv')  
 
def create_App(): 
    global heading, sensor1, sensor2 
    app = Flask(__name__) 
 
    @app.route('/dashboard') 
    def get_dashboard_data(): 
        # Create a List containing the Node # and recent data 
        data = heading 
        return jsonify(data=data) 
 
    @app.route('/sensor1') 
    def get_sensor1_data(): 
        data = sensor1 
        # Return a JSON response with the data list 
        return jsonify(data=data) 
 
    @app.route('/sensor2') 
    def get_sensor2_data(): 
        data = sensor2 
        # Return a JSON response with the data list 
        return jsonify(data=data) 
 
    # Start the APScheduler to run check_values() every minute 
    scheduler = BackgroundScheduler() 
    scheduler.add_job(check_values, 'interval', minutes=1) 
    scheduler.start() 
 
    app.run(host='0.0.0.0', port=5000) 

 


